Kaggle Competition – Titanic – Machine Learning from Disaster – Predict survival on the Titanic

L’RMS Titanic è stato un transatlantico britannico della classe Olympic naufragato nelle prime ore del tragico 15 aprile 1912, durante il suo viaggio inaugurale, a causa della collisione con un iceberg avvenuta nella notte.

La sfida proposta da Kaggle: Titanic – Machine Learning from Disaster alla quale ho aderito, richiede l’analisi di un dataset contenente informazioni relative ad un sottoinsieme di passeggeri imbarcati sul Titanic con lo scopo di realizzare un modello predittivo che sia in grado di classificare al meglio se un determinato passeggero si salverà dal naufragio.

tassi di sopravvivenza per classe

Alcune delle informazioni disponibili per l’analisi, di cui occorre individuare il livello di correlazione con la probabilità di salvezza, sono: sesso, età, cabina, classe, ponte, numero di parenti a bordo, porto di imbarco, tariffa pagata; moltissime altre informazioni possono essere derivate da elaborazioni più o meno complesse ed implicite tra i dati disponibili come ad esempio dai nomi completi è possibile risalire ai titoli, ad alcune professioni o anche spingersi al raggruppamento delle famiglie.

La grande sfida è quella di spingere al massimo l’accuratezza del modello predittivo al fine di classificare al meglio un insieme di passeggeri di test di cui non è nota la sorte; solo dopo la sottomissione a Kaggle si scoprirà il livello di accuratezza raggiunto.

Il modello predittivo di base che occorre superare e contro il quale ci si deve confrontare, che ho definito come modello baseline, assume semplicemente che tutte le donne si salveranno; applicando questa condizione elementare, si raggiunge un’accuratezza dell’insieme di passeggeri da classificare di poco superiore al 76%.

modello baseline: tutte le donne si salvano raggiunge un’accuratezza dello 0.76555

Questa competizione è un’ottima introduzione alla piattaforma Kaggle e richiede lo sviluppo di tutte le fasi di costruzione di un modello predittivo: analisi dei dati, preparazione e raffinamento dei dati, visualizzazione dei dati, costruzione del modello, validazione del modello e della sua accuratezza, comprensione della piattaforma Kaggle.

Nel mio notebook ho deciso di affrontare la sfida in Python costruendo un modello tramite la libreria XGBoost nota sia per essere alla base delle migliori implementazioni all’avanguardia del settore ma anche perché alla base dei modelli vincenti delle competizioni Kaggle. Tale libreria implementa il framework Gradient Boost in modalità estremamente scalabile, efficiente e portabile.

La mia implementazione, già completamente funzionante, è ancora in evoluzione è raggiungibile a questo indirizzo:

Kaggle Competition – Titanic – Machine Learning from Disaster – Predict survival on the Titanic – Luca Amore

Share

Infection Spread Simulator Construction Kit

Al fine di comprendere meglio l’articolo: Modeling How Infectious Diseases like Coronavirus Spread ed i riferimenti citati, continuando ad approfondire, mi sono ritrovato a costruire il framework: “Infection Spread Simulator Construction Kit”.

Si tratta di un notebook Python su Colab per la modellazione della diffusione di un’infezione attraverso un modello SEIR descritto da un sistema di equazioni differenziali (o un algoritmo); lo stesso modello proposto per l’analisi della diffusione del covid-19 nell’articolo che ha ispirato questo lavoro.

Chiunque, anche senza nessuna base matematica, con una conoscenza basilare di programmazione, può modificare il notebook all’interno della propria sandbox Colab, descrivere un virus o il comportamento di un’infezione ed analizzare la sua diffusione nel tempo per comprendere come la variazione di certi parametri può incidere nella diffusione.

Si tratta di un prototipo, nato per uso strettamente personale, con molti limiti ma voglio comunque condividerlo con la comunità rilasciandolo come software libero sotto la licenza GNU/GPL v.3.

Sarei felice di ricevere i vostri feedback, i vostri modelli, le vostre evoluzioni anche direttamente su github. Nei prossimi giorni, utilizzando questo framework o una sua evoluzione, vorrei provare a realizzare il complesso modello di diffusione del covid-19 descritto nell’articolo.

Segue il link diretto al notebook su github:

NOTEBOOK INFECTION SPREAD SIMULATOR CONSTRUCTION KIT (GITHUB)

MALARIA
Il primo modello reale (non SEIR) che rilascio è quello della malaria. In questo caso ho dovuto apportare delle modifiche più complesse al modello base.

MALARIA NOTEBOOK (GITHUB)

Share