Generative AI Cooking Experiments for Making a Yogurt Cake with a Thermomix (Bimby) – pie-ai v.0.1

Today, for fun and experimentation, I tried to make my first Thermomix (Bimby) TM6 recipe completely developed and optimized with generative artificial intelligence (ChatGPT v4): a delicious and very light yogurt cake that I’ve named pie-ai v.0.1. I followed the recipe to the letter, including any hallucinations that I anyway wouldn’t be able to detect. The final product is shown in the photo. I will wait until breakfast tomorrow to taste it, but it looks very good. Follow the ai-pie recipe v.0.1 in the comments at your own risk.


Imaginary Journey to the Frontier of AI: A Glimpse into the Year 2912

In this imaginative journey to the frontier of AI, we’ll project ourselves into the year 2912, where we will challenge the Data Analysis module of ChatGPT v4 to solve a space-time anomaly.

interstellar titanic ship

To break the ice, I asked ChatGPT to briefly describe, based on its knowledge, how it imagines humanity in the year 2912, especially in relation to intergalactic travel.

“By the year 2912, I envision humanity as a highly advanced civilization, spread across multiple planets and star systems. Thanks to discoveries in physics and bioengineering, humans are able to adapt to different space environments and have developed intergalactic travel technology that allows crossing vast cosmic distances in a short time. Spacecrafts are elegant and sophisticated, equipped with AI systems to assist and protect travelers. Human cultures are diverse, influenced by various space colonies, yet united by a common quest for exploration and knowledge.”

I share ChatGPT’s optimism, which doesn’t describe a dystopian future or conflicts, but collaboration among civilizations; probably a reflection of its algorithms’ optimism bias.

Now, let’s describe our intergalactic problem presented on Kaggle:

Addison Howard, Ashley Chow, Ryan Holbrook. (2022). Spaceship Titanic. Kaggle

The interstellar spaceship Titanic, on its maiden voyage, is transporting about 13,000 emigrants from our solar system to three newly habitable exoplanets. Passengers come from Earth, Mars, and Europa, some in cryogenic sleep. The ship offers various services, including VIP treatments, a SPA, a shopping center, and a high-tech Virtual Reality deck. All onboard activities are tracked by a next-generation computer system.

Near Alpha Centauri, en route to the torrid 55 Cancri E, the ship encounters a space-time anomaly hidden by a dust cloud. After 1,000 years, it seems the tragedy of the previous Titanic is repeating in space.

After the impact, although the ship remains miraculously intact, nearly half the passengers are teleported to an alternate dimension!

view of spaceship

To aid rescue teams and recover the missing passengers, we must predict which passengers have been teleported using data from the damaged computer system.

Here’s where we come in with the assistance of ChatGPT v4 and its Data Analytics module.

We face a synthetic problem, created in the lab, which I consider extremely valid and complete to delve into various themes related to data analysis and machine learning algorithms.

To effectively solve these types of problems typically requires complex theoretical and programming knowledge. ChatGPT assists the operator by guiding through all stages of the process.

Here are the details of the Spaceship Titanic problem:

We start with a training file containing data on two-thirds of the passengers and information on whether they have been teleported, and a test file with the same data but no information on the remaining passengers’ teleportation status.

The challenge is to predict, as accurately as possible, whether the passengers in the test file will be teleported.

Here are the known passenger data.

PassengerIdA unique ID for each passenger, in the format gggg_pp where gggg indicates a group the passenger belongs to and pp is the passenger number within the group.
HomePlanetThe planet the passenger departed from, usually their permanent residence planet.
CryoSleepIndicates whether the passenger chose to be put in suspended animation for the journey. Cryosleep passengers are confined to their cabins.
CabinThe cabin number where the passenger is located. Presented in the format deck/number/side, where the side can be P for Port (left) or S for Starboard (right).
DestinationThe planet where the passenger disembarks.
AgeThe passenger’s age.
VIPIndicates whether the passenger paid for a special VIP service during the trip.
RoomServiceAmount the passenger charged to room service. NameThe names and surnames of the passenger.TransportedIndicates whether the passenger has been transported to another dimension. This is the target variable, the column we are trying to predict.

FoodCourtAmount the passenger charged to the food court.
ShoppingMallAmount the passenger charged to the shopping center.
SpaAmount the passenger charged to the spa.
VRDeckVRDeckAmount the passenger charged to the virtual reality deck.
NameThe name and surname of the passenger.
TransportedIndicates whether the passenger has been transported to another dimension. This is the target variable, the column we are trying to predict.
known passenger data

I attempted to solve the problem using ChatGPT v. 4.0 utilizing its Data Analysis module.

After presenting the training file, ChatGPT reprocessed it in the best way and also proposed the best strategies for managing missing data.

Spoiler Alert if you want to tackle this problem without any information.

I asked ChatGPT to explain how these variables might influence the Target Transported variable, and here’s the response:


Predicting whether a passenger has been teleported or not is based on analyzing various factors (or variables) in the dataset. Here’s a brief summary of how some of these variables might influence the probability of being teleported:

HomePlanet (Planet of Origin): The probability of being teleported may vary depending on the passenger’s planet of origin. There could be specific trends or policies associated with each planet influencing this probability.

CryoSleep (Cryogenic Sleep): Passengers in cryogenic sleep may have a higher probability of being teleported, perhaps due to specific procedures or protocols related to their state.

Cabin (Cabin): The type or location of the cabin might correlate with the probability of being teleported, perhaps due to proximity to specific teleportation devices or areas of the spacecraft.

Destination (Destination): The final destination might influence the probability of being teleported, perhaps due to different procedures for different places or travel distances.

Age (Age) and VIP: Though with a weaker correlation, age and VIP status may play a role, potentially due to policies or preferential treatments for certain age groups or VIPs.

Expenses (RoomService, FoodCourt, etc.): Expenditures in various categories (like RoomService, FoodCourt, etc.) show a correlation, suggesting that a passenger’s spending behavior might be linked to their probability of being teleported.

It’s important to note that these are correlations observed in the data and do not necessarily imply a direct cause-effect relationship. Teleportation decisions might be influenced by a complex interplay of these factors and others not captured in the dataset.


The analysis phase was truly impressive, considering it was completely automated.


During the model construction phase, ChatGPT guided us through various stages. Errors occurred several times, which were analyzed and recovered more or less effectively. A major limitation is that more complex computations are also interrupted due to timeout.

ChatGPT suggested using the Random Forest algorithm for the model.

I asked for the rationale behind this choice.


I chose the Random Forest model to predict the teleportation status for various reasons, making it particularly suitable for this type of problem:

Handling Categorical and Continuous Variables: Random Forest effectively manages both categorical and continuous variables. In the provided dataset, we have both types of variables, making Random Forest an appropriate choice.

Robustness to Noisy Data and Outliers: Random Forest is known for its robustness to noisy data and outliers, which can be present in real datasets like this.

Lower Risk of Overfitting: Thanks to its ensemble algorithm nature, combining the results of many decision trees, Random Forest tends to have a lower risk of overfitting compared to single decision trees.

Variable Importance: Random Forest provides useful insights into variable importance, which can help understand which factors most significantly influence the prediction. This is useful for interpreting the model’s results in relation to the business problem.

Good Overall Performance: Generally, Random Forest is known for its good performance across a wide range of classification problems, making it a reliable starting point for many machine learning applications.

Flexibility and Scalability: It’s a flexible model that can be easily adapted to improve performance (e.g., adjusting the number of trees) and scales well with large datasets.

In summary, I chose Random Forest for its robustness, reliability, and ability to provide high-quality results on a complex dataset like the one provided.


The result achieved was an accuracy of 0.79822, which I find astonishing given that it was conducted in a fully guided mode; we also placed reasonably well on the leaderboard for this problem.

These are the parameters obtained on the validation set.

Precision (False)0.8000
Precision (True)0.7800
Recall (False)0.7700
Recall (True)0.8100
F1-Score (False)0.7800
F1-Score (True)0.8000
validation set parameters

All the Python code created can be viewed, which is extremely useful for beginners.

ChatGPT V4 Data Analysis proved to be an incredible assistant, albeit a bit unstable as there were errors that forced me to start over.

All images were created by DALL·E 2 through ChatGPT v4.


Intelligenza Artificiale: le nuove frontiere – resoconto dell’evento

Grazie di cuore ai numerosi partecipanti, a tutti gli interventi e tutte le stupende domande che abbiamo ricevuto all’evento che ha avuto un grandissimo successo ed una partecipazione oltre ogni aspettativa. Grazie anche ai miei fantastici colleghi di Torino e Milano che hanno partecipato a sorpresa rendendo la mia esperienza ancora più bella. Grazie a tutto il gruppo Gosub 42 per lo straordinario supporto in tutte le fasi ed a Stefania Oliviero e Marco Piva come co-relatori e grandi sostenitori dell’iniziativa. Grazie all’Amministrazione Comunale per il patrocinio, per aver accettato il nostro patto di collaborazione e per l’apertura del Maker Space all’interno degli spazi della biblioteca.

Durante la conferenza, dopo qualche sondaggio rompighiaccio ai partecipanti per focalizzare la mente sul tema, abbiamo parlato della storia dell’intelligenza artificiale, con qualche accenno a letteratura e cinema di fantascienza, della rivoluzione introdotta dal paradigma Machine Learning, abbiamo mostrato varie tipologie di deep fake e approfondito la conoscenza con ChatGPT e Midjourney. Per ChatGPT abbiamo anche parlato delle allucinazioni, prompt injection e dei rilevatori di testi prodotti da ChatGPT e della loro affidabilità. Al termine dell’evento ci sono state delle bellissime domande e delle interessanti riflessioni da parte degli intervenuti sui possibili scenari futuri.

Seguono solo alcune delle immagini inedite realizzate con Midjourney usate per la preparazione delle slide o per la promozione dell’evento:

Dai partecipanti mi è stato chiesto di porre questa bellissima domanda a ChatGPT-4:

“dimmi quali professioni saranno meno intaccate dallo sviluppo dell’intelligenza artificiale”

Risposta GPT-4:

L’intelligenza artificiale (IA) sta rivoluzionando molti settori e cambiando il panorama del mondo del lavoro. Tuttavia, ci sono alcune professioni che dovrebbero essere meno intaccate dall’IA, almeno nel breve e medio termine. Queste professioni tendono ad avere un forte elemento di creatività, empatia, interazione umana o competenze manuali che sono difficili da replicare con l’IA. Ecco alcune professioni che dovrebbero essere meno intaccate:

Professioni sanitarie: Medici, infermieri e terapisti sono professioni che richiedono un’alta competenza umana, empatia e abilità nella presa di decisioni complesse. L’IA può aiutare in termini di diagnosi e raccomandazioni, ma l’interazione umana e la capacità di valutare il contesto sono difficili da sostituire.

Educazione: Insegnanti e formatori sono professioni che richiedono un’alta capacità di interazione umana, empatia e adattamento alle diverse esigenze degli studenti. L’IA può fornire strumenti di supporto, ma la relazione tra insegnante e studente e l’adattamento dell’insegnamento alle esigenze individuali sono difficili da replicare.

Professioni artistiche e creative: Artisti, musicisti, scrittori e designer sono professioni in cui la creatività e l’espressione umana sono elementi fondamentali. Anche se l’IA può produrre arte e musica, la componente umana dell’arte e della creatività è difficile da replicare.

Professioni sociali: Psicologi, consulenti, lavoratori sociali e altre professioni che si occupano di aiutare le persone a gestire problemi emotivi o relazionali richiedono un’alta capacità di empatia e comprensione delle sfumature umane. L’IA può fornire strumenti di supporto, ma la relazione terapeutica e la capacità di comprendere le emozioni umane sono difficili da replicare.

Professioni legate all’artigianato: Falegnami, muratori, sarti e altre professioni che richiedono abilità manuali e competenze specifiche saranno meno colpite dall’IA, in quanto il lavoro manuale e l’abilità richiesta sono difficili da automatizzare completamente.

È importante notare che, anche se queste professioni potrebbero essere meno intaccate dall’IA, ciò non significa che non subiranno alcun cambiamento. L’IA e altre tecnologie continueranno a evolversi e potrebbero influenzare queste professioni in modi diversi, come migliorando la produttività o fornendo nuovi strumenti e metodi di lavoro.

I’avventuroso viaggio all’interno di una mente artificiale generativa di una tazzina di caffè

Nel corso dell’evento abbiamo mostrato la stessa immagine di una tazzina di caffè davanti ad una finestra, reinterpretata moltissime volte tramite Midjorney per ambientazione e stile.

Abbiamo anche mostrato come ChatGPT-4 è in grado di immedesimarsi in personaggi storici chiedendo:

“potresti spiegarmi come funziona un forno a microonde come se tu fossi dante alighieri”

Risposta GPT-4:

Nel profondo dell’oscuro regno di cucina,
Ove l’uomo si adopra per placar la fame,
Risiede un nobile arnese di rara virtute:
Il forno a microonde, di calore diletto.

Questo mostro d’acciaio, di vetro e circuiti,
Genera onde invisibili, rapide e potenti,
Che di nome portano “microonde”, vere arpie
Che l’acqua agitano, nel cibo celata.

Le molecole d’acqua, da questo incantesimo,
S’avvampano e danzan come anime nel fuoco,
E per tal movimento il calore si scatena.

Il cibo, assediato da queste oscure forze,
Si scalda e si cuoce, mentre il tempo scorre,
E ben presto è pronto per l’ingordo palato.

Ma fa’ attenzione, o amico, a non restar trafitto
Da questa magia, ché potria nuocerti assai.
Usa saviamente il forno, con rispetto e cautela,
E i deliziosi frutti della sua opera gusterai.

Abbiamo anche chiesto a ChatGPT-4 di riformulare la risposta verso un destinatario preciso ottenendo risultati sorprendenti.

“potresti spiegarmelo come se io fossi un bambino di 7 anni”

Risposta GPT-4:

Immagina che il forno a microonde sia una scatola magica che può riscaldare il tuo cibo preferito in pochi minuti! All’interno di questa scatola, c’è un componente speciale chiamato “magnetrone” che crea delle piccole onde invisibili, come quando lanci un sasso nell’acqua e vedi le onde allontanarsi dal centro.

Queste onde invisibili si chiamano “microonde” e si muovono velocemente all’interno della scatola magica, facendo muovere e ballare le particelle d’acqua nel cibo. Quando le particelle d’acqua si muovono e ballano, si scontrano tra di loro e si riscaldano, e questo fa sì che il tuo cibo si scaldi velocemente!

Però, devi stare attento a non mettere oggetti di metallo, come forchette o fogli di alluminio, nella scatola magica, perché le microonde non vanno d’accordo con i metalli e potrebbero creare scintille e fumo.

Ecco, adesso sai come funziona il forno a microonde! È un aiuto fantastico per scaldare il tuo cibo velocemente, ma ricorda di chiedere sempre aiuto a un adulto quando lo usi, così starai al sicuro.

Alcuni volti fake realizzati tramite un modello generativo

Queste persone non sono reali. I loro volti fake sono stati generati da un modello generativo.

Altre immagini realizzate con Midjourney nel corso dell’evento o della promozione

Abbiamo richiesto di a Midjourney degli strumenti musicali del futuro che potrebbero essere usati nel 2100. Riuscite ad immaginare il loro suono?

Invito al Makerspace

Siete tutti invitati ai nostri simposi tecnologici che si svolgeranno ogni secondo giovedì del mese presso il Makerspace situato all’interno della Biblioteca Comunale di Gorgonzola.


Invito all’evento Intelligenza Artificiale: Le nuove Frontiere

Vi invito a partecipare all’evento in cui sarò relatore insieme a Stefania Oliviero e che, con il gruppo GOSUB42, stiamo organizzando presso la Sala Consiliare del Comune di Gorgonzola il giorno 14 aprile 2023 alle ore 21:00.

immagine realizzata dalla collaborazione di ChatGPT con Midjourney

Immaginate un futuro in cui le macchine possano imparare, comprendere e risolvere problemi in modo simile agli esseri umani. Un futuro in cui l’intelligenza artificiale non sia soltanto un concetto astratto, ma un elemento fondamentale della nostra vita quotidiana, con un impatto positivo su salute, lavoro e svago.

Nel corso di questo evento, in modo divertente ed accessibile a tutti (anche ai non tecnici), ci proietteremo verso questo futuro esplorando alcune delle applicazioni più innovative dell’Intelligenza Artificiale tra cui: ChatGPT v4 e Midjorney. Siete tutti invitati!


Segue l’invito generato dalla cooperazione di più intelligenze artificiali:


Viaggio alla frontiera dell’AI: ChatGPT 3

Incontriano ChatGPT 3 attraverso un’intervista esclusiva che ho realizzato per i lettori del magazine indipendente B-HOP. Il modello genativo, instancabile alchimista di parole e conoscenza, portato ai confini delle sue potenzialità, risponde brillantemente e con eleganza ad ogni domanda come mai nessuna macchina è stata in grado di fare nella storia dell’umanità. Le illustrazioni a corredo sono state realizzate tramite Deep Dream Generator.

Leggi la mia intervista esclusiva a ChatGPT sul Magazine B-HOP

Ritratto di ChatGPT che ho realizzato tramite AI con Deep Dream Generator